

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUGUST 2011
2. REPORT TYPE

Conference Paper-Post Print
3. DATES COVERED (From - To)

June 2009 – March 2011
4. TITLE AND SUBTITLE

SECURE PROACTIVE RECOVERY-A HARDWARE BASED MISSION
ASSURANCE SCHEME

5a. CONTRACT NUMBER
In House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Ruchika Mehresh, Shambhu Upadhyaya, and Kevin Kwiat

5d. PROJECT NUMBER
23G4

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFRL/Information Directorate University of Buffalo
Rome Research Site/RIGD Dept of Computer Science and Engineering
525 Brooks Road Buffalo, NY 14260
Rome, NY 13441

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site
26 Electronic Parkway
Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2011-2

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA #: 88ABW-2010-6904
Date Cleared: November 16, 2010.
13. SUPPLEMENTARY NOTES
© 2011 ACI. This Conference Paper published in Proceedings of the International Conference on Information Warfare; Washington DC, 17-18 March 2011. This
work is copyrighted. One or more of the authors is a U.S. Government employee working within the scope of their Government job; therefore, the U.S. Government is
joint owner of the work and has the right to copy, distribute, and use the work. All other rights are reserved by the copyright owner.
14. ABSTRACT
Mission Assurance in critical systems entails both fault tolerance and security. Since fault tolerance via redundancy or replication is
contradictory to the notion of a limited trusted computing base, normal security techniques cannot be applied to fault tolerant
systems. Thus, in order to enhance the dependability of mission critical systems, designers employ a multi-phase approach that
includes fault/threat avoidance/prevention, detection and recovery. Detection phase is the fallback plan for avoidance/prevention phase, as
recovery phase is the fallback plan for detection phase. However, despite this three-stage barrier, a determined adversary can
still defeat system security by staging an attack on the recovery phase. Recovery being the final stage of the dependability life-cycle,
unless certain security methodologies are used, full assurance to mission critical operations cannot be guaranteed. For this reason, a
new methodology is proposed: secure proactive recovery.

15. SUBJECT TERMS
Security, fault tolerance, mission assurance, critical systems, hardware

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

10

19a. NAME OF RESPONSIBLE PERSON
Kevin A. Kwiat

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Secure Proactive Recovery – a Hardware Based Mission
Assurance Scheme

Ruchika Mehresh1, Shambhu Upadhyaya1 and Kevin Kwiat2
1State University of New York at Buffalo, USA
2Air Force Research Laboratory, Rome, USA
rmehresh@buffalo.edu
shambhu@buffalo.edu
kwiatk@rl.af.mil

Abstract: Mission Assurance in critical systems entails both fault tolerance and security. Since fault tolerance via
redundancy or replication is contradictory to the notion of a limited trusted computing base, normal security
techniques cannot be applied to fault tolerant systems. Thus, in order to enhance the dependability of mission
critical systems, designers employ a multi-phase approach that includes fault/threat avoidance/prevention,
detection and recovery. Detection phase is the fallback plan for avoidance/prevention phase, as recovery phase
is the fallback plan for detection phase. However, despite this three-stage barrier, a determined adversary can
still defeat system security by staging an attack on the recovery phase. Recovery being the final stage of the
dependability life-cycle, unless certain security methodologies are used, full assurance to mission critical
operations cannot be guaranteed. For this reason, we propose a new methodology, viz. secure proactive
recovery that can be built into future mission-critical systems in order to secure the recovery phase at low cost.
The solution proposed is realized through a hardware-supported design of a consensus protocol. One of the
major strengths of this scheme is that it not only detects abnormal behavior due to system faults or attacks, but
also secures the system in case where a smart attacker attempts to camouflage by playing along with the
predefined protocols. This sort of adversary may compromise certain system nodes at some earlier stage but
remain dormant until the critical phase of the mission is reached. We call such an adversary The Quiet Invader.
In an effort to minimize overhead, enhance performance and tamper-proof our scheme, we employ redundant
hardware typically found in today’s self-testing processor ICs, like design for testability (DFT) and built-in self-test
(BIST) logic. The cost and performance analysis presented in this paper validates the feasibility and efficiency of
our solution.

Keywords: security, fault tolerance, mission assurance, critical systems, hardware

1. Introduction

Research in the past several decades has seen significant maturity in the field of fault tolerance. But,
fault tolerant systems still require multi-phased security due to the lack of a strong trusted computing
base. The first phase in this regard is avoidance/prevention, which consists of proactive measures to
reduce the probability of any faults or attacks. This can be achieved via advanced design
methodologies like encryption. The second phase, detection, primarily consisting of an intrusion
detection system attempts to detect the faults and malicious attacks that occur despite the preventive
measures. The final phase is the recovery that focuses on recuperating the system after the
occurrence of attack/fault. Generally, fault tolerant systems rely on replication and redundancy for
fault-masking and system recovery.

These three layers of security provide a strong defense for mission critical systems. Yet, if a
determined adversary stages an attack on the recovery phase of an application, it is quite possible
that the mission will fail due to the lack of any further countermeasures. Therefore, these systems
need the provisioning of another layer of defense to address attacks that may be brought about by
malicious opponents during the recovery phase itself.

The quiet invader is another serious threat that we consider. Attacking the mission in its critical phase
not only leaves the defender with less time to respond, but cancelling the mission at this late stage is
far more expensive than cancelling it at some earlier stage. In the case where the defender is not left
with enough time to respond to the attack, it can lead to major economic loss and even fatalities.

We develop a framework for mission assured recovery using the concept of runtime node-to-node
verification implementable at low-level hardware that is not accessible by the adversary. The rationale
behind this approach is that if an adversary can compromise a node by gaining root privilege to user-
space components, any solution developed in the user space will not be effective since such solutions
may not remain secure and tamper-resistant. In our scheme, the entire verification process can be
carried out in a manner that is oblivious to the adversary, which gains the system an additional

171

1

Ruchika Mehresh et al.

advantage. We explore the potential of utilizing the test logic on the processors (and hence the name
“hardware-based mission assurance scheme”) for implementing our secure proactive recovery
paradigm. This choice makes our solution extremely cost effective. In order to establish the proof-of-
concept for this proposal, we will consider a simple mission critical system architecture that uses
majority consensus for diagnosis and recovery. Finally, we analyze the security, usability and
performance overhead for this scheme.

2. Related work

The solutions proposed in the literature to address faults/attacks in fault tolerant systems are
designed to employ redundancy, replication and consensus protocols. They are able to tolerate the
failure of up to f replicas. However, given enough time and resources, an attacker can compromise
more than f replicas and subvert the system. A combination of reactive and proactive recovery
approaches can be used to keep the number of compromised replicas under f at all times (Sousa et
al. 2007). However, as the attacks become more complex, it becomes harder to detect any faulty or
malicious behavior (Wagner and Soto 2002). Moreover, if one replica is compromised, the adversary
holds the key to other replicas too. To counter this problem, researchers have proposed spatial
diversity in software. Spatial diversity can slow down an adversary but eventually the compromise of
all diverse replicas is possible. Therefore, it was further proposed to introduce time diversity along
with the spatial diversity. Time diversity modifies the state of the recovered system (OS access
passwords, open ports, authentication methods, etc.). This is to assure that an attacker is unable to
exploit the same vulnerabilities that he had exploited before (Bessani et al. 2008).

3. Threat model

We developed an extensive threat model to analyze security logically in a wide range of scenarios.
Assume that we have n replicas in a mission-critical application and the system can tolerate the failure
of up to f replicas during the entire mission.

Scenario 1: Attacks on Byzantine fault-tolerant protocols

Assume that no design diversity is introduced in a replicated system. During the mission lifetime, an
adversary can easily compromise f+1 identical replicas and bring down the system.

Scenario 2: Attacks on proactive recovery protocols

In proactive recovery, the whole system is rejuvenated periodically. However, the adversary becomes
more and more knowledgeable as his attacks evolve with each succeeded/failed attempt. So it is only
a matter of time before he is able to compromise f+1 replicas between periodic rejuvenations.
Furthermore, the compromised replicas can disrupt the system’s normal functioning in many ways like
creating extra traffic so the recovery is delayed and the adversary gains more time to compromise f+1
replicas (Sousa et al. 2007).This is a classic case of attacking the recovery phase.

Scenario 3: Attacks on proactive-reactive recovery protocols

Proactive-reactive recovery solves several major problems, except that if the compromised node is
recovered by restoring the same state that was previously attacked, the attacker will already know the
vulnerabilities (Sousa et al. 2007). In this case, a persistent attacker may get faster with time, or may
invoke many reactive recoveries exhausting the system resources. Large number of recoveries also
affects the system availability adversely. This is also an instance of attacking the recovery phase.
Furthermore, arbitrary faults are very difficult to detect (Haeberlen et al. 2006).

Scenario 4: Attacks on proactive-reactive recovery with spatial diversity

Spatial diversity in replicas is proposed to be a relatively stronger security solution. It can be difficult
and more time-consuming for the adversary to compromise f+1 diverse replicas but it is possible to
compromise these diverse replicas eventually, especially for long running applications. Also, most of
the existing systems are not spatially diverse. Introducing spatial diversity into the existing systems is
expensive.

Time diversity has been suggested to complement the spatial diversity so as to make it almost
impossible to predict the new state of the system (Bessani et al. 2008). The complexity involved in

172

2

Ruchika Mehresh et al.

implementing time diversity in a workable solution is very high because it will have to deal with on-the-
fly compatibility issues and much more. Besides, updating replicas and other communication
protocols consume considerable time and resources. A decent workable solution employing space
diversity still needs a lot of work (Banatre et al. 2007), so employing time diversity is a step planned
too far into the future.

Scenario 5: The quiet invader

In the presence/absence of spatial diversity, an adversary may be able to investigate a few selected
nodes quietly and play along with the protocol to avoid getting caught and gain more time to
understand the system. After gathering enough information, the adversary can design attacks for f+1
replicas and launch the attacks on all of them at once when he is ready or when the mission enters a
critical stage. If these attacks are not detected or dealt with in time, the system fails. This is an
evasive attack strategy for subverting the detection and recovery phases. Similar threat models have
been discussed in literature previously (Todd et al. 2007, Del Carlo 2003).

Scenario 6: The physical access threat

Sometimes system nodes are deployed in an environment where physical access to them is a highly
probable threat. For instance, in the case of wireless sensor network deployment, sensor nodes are
highly susceptible to physical capture. To prevent such attacks, we need to capture any changes in
the physical environment of a node. A reasonable solution may involve attaching motion sensors to
each node. Any unexpected readings from these motion sensors will indicate a possible threat and
then our scheme can be used to assure the mission.

4. System design

4.1 Assumptions

We work with a simplified, centralized architecture of a mission critical application in order to describe
and evaluate the proposed scheme. No spatial or time diversity is assumed, though our scheme will
work with any kind of diversity.

The network can lose, duplicate or reorder messages but is immune to partitioning. The coordinator
(central authority and trusted computing base) is responsible for periodic checkpointing in order to
maintain a consistent global state. The stable storage at coordinator holds the recovery data through
all the tolerated failures and their corresponding recoveries. We assume sequential and equidistant
checkpointing (Elnozahy et al. 2002).

The replicas are assumed to be running on identical hardware platforms. Each node has advanced
CPU (Central processing unit) and memory subsystems along with the test logic (in the form of DFT
and BIST) that is generally used for manufacture test. Refer to Fig. 1(a). All the chips comply with the
IEEE 1149.1 JTAG standard (Abramovici and Stroud 2001). Fig. 1(b) elaborates the test logic and
boundary scan cells corresponding to the assumed hardware.

We assume a software tripwire running on each replica that can be used to detect a variety of
anomalies at the host. By instrumenting the openly available tripwire source code (Hrivnak 2002), we
can direct the "intrusion alert/alarm" to a set of system registers (using low level coding).The triggered
and latched hardware signature will be read out by taking a snapshot of the system registers using
the “scan-out” mode of the observation logic associated with the DFT hardware. The bit pattern will be
brought out to the CPU ports using the IEEE 1149.1 JTAG instruction set in a tamper-resistant
manner. Once it is brought out of the chip, it will be securely sent to the coordinator for verification and
further action. This way, the system will be able to surreptitiously diagnose the adversary’s action.

4.2 Conceptual basics

We present a simple and practical alternative to the spatial/time diversity solutions in order to increase
the resilience of a fault tolerant system against benign faults and malicious attacks. In particular, this
is to address the threat of a quiet invader (Scenario 5 of Section 3). An adversary needs to
compromise f+1 replicas out of the n correctly working replicas in order to affect the result of a
majority consensus protocol and disrupt the mission.

173

3

Ruchika Mehresh et al.

Figure 1(a): Replicated hardware

Figure 1(b): Capturing signature

The key idea is to detect a system compromise by a smart adversary who has taken over some
replicas (or has gained sufficient information about them) but is playing along in order to gain more
time. From the defender’s point of view, if the system knows which of the n replicas have become
untrustworthy, the mission can still succeed with the help of the surviving healthy replicas. Smart
attackers try to minimize the risk of getting caught by compromising only the minimum number of
replicas required in order to subvert the entire system. Aggressive attackers can be clearly and easily
detected and thus their attacks can be recovered from. So a smart defender should be able to detect
the attacks surreptitiously so as not to make the attacker aggressive. This especially holds for the
cases when a smart attacker has been hiding for long and the mission is nearing completion. At this
stage, the priority is not to identify the attacker but to complete the mission securely.

The proposed scheme offers a passive detection and recovery, in order to assure the adversary of its
apparent success to prevent him from getting more aggressive. At some later stage, when the
adversary launches an attack to fail f+1 replicas at once, the attack fails because those replicas have
already been identified and ousted from the voting process without the knowledge of the attacker. In
our solution, we require that there should be at least two correctly working replicas to provide a duplex
system at a minimum, for the mission to succeed. The advantage of this approach is that in the worst
case where all the replicas are compromised, the system will not deliver a result, rather than
delivering a wrong one. This is a necessary condition for many safety-critical missions. If an adversary
can compromise a replica by gaining root privilege to user-space components, one should note that
any solution developed in the user space will not be effective since such solutions will not remain
secure and tamper-resistant. Therefore, our paradigm achieves detection of node compromise
through a verification scheme implementable in low-level hardware. We use software or hardware-
driven tripwires that would help detect any ongoing suspicious activity and trigger a hardware
signature that indicates the integrity status of a replica. This signature is generated without affecting
the application layer, and hence the attacker remains oblivious of this activity. Also, a smart attacker is
not likely to monitor the system thoroughly as that may lead to detection. This signature is then
securely collected and sent to the coordinator that performs the necessary action.

4.3 Checkpointing

In our simplified application, the checkpointing module that affiliates to the coordinator establishes a
consistent global checkpoint and also carries out voting procedures that lead to anomaly detection
due to faults, attacks or both.

174

4

Ruchika Mehresh et al.

The coordinator starts the checkpointing/voting process by broadcasting a request message to all the
replicas, asking them to take checkpoints. It also initiates a local timer that runs out if the coordinator
does not receive the expected number of replies within a specific time frame. On receiving this
message, all the replicas pause their respective executions and take a checkpoint. These checkpoints
are then sent over the network to the coordinator through a secure channel using encryption. On
receiving the expected number of checkpoints, coordinator compares them for consistency. If all
checkpoints are consistent, it broadcasts a commit message that completes the two-phase checkpoint
protocol. After receiving the commit message, all the replicas resume their respective executions. This
is how the replicas execute in lockstep. In case the timer runs out before the expected number of
checkpoints are received at the coordinator, it sends out another request message. All the replicas
send their last locally stored checkpoints as a reply to this request message. In our application, we
have limited the number of repeated checkpoint requests to three per non-replying replica. If a replica
does not reply to three (or a threshold count) checkpoint request messages, it is considered dead by
the coordinator and a commit message is sent to the rest of the replicas if their checkpoints are
consistent. In case that the checkpoints are not consistent, the coordinator replies with a rollback
message to all the replicas. This rollback message includes the last consistent checkpoint that was
stored on the stable storage at the coordinator. All the replicas then return to the previous state of
execution as defined by the rollback message. If a certain replica fails to deliver consistent checkpoint
and causes more than three (or a threshold count) consecutive rollbacks, the fault is considered
permanent and the replica is excluded from the system.

A hardware signature is generated at each replica and piggybacked on the checkpoint when it is sent
to the coordinator. This signature quantifies the integrity status of the replica since the last successful
checkpoint. For simplicity, we use the values – all-0s (for an uncompromised replica) and all-1s (for a
compromised replica). A host-based intrusion detection sensor at all the replicas is responsible for
generating these signatures. If the coordinator finds any hardware signature to be all-1s, then the
corresponding replica is blacklisted and any of its future results/checkpoints are ignored at the
coordinator. However, the coordinator continues normal communication with the blacklisted replica to
keep the attacker unaware of this discovery.

Finally, all the results from each of the non-blacklisted replicas will be voted upon by the coordinator
for the final result.

4.4 Using built-in test logic for hardware signature generation and propagation

As described under assumptions, the system uses a software-driven trip-wire that monitors the
system continuously for a specified range of anomalies. Tripwire raises an alarm on anomaly
detection by setting the value of a designated system register to all-1s (it will be all-0s otherwise). This
value then becomes the integrity status indicator for the replica and is read out using the scan-out
mode of the test logic. It is then securely sent to the coordinator for verification.

5. Performance analysis

Most of the mission critical military applications that employ checkpointing or proactive security tend to
be long running ones. For instance, a rocket launch countdown running for hours/days. Therefore, our
performance analysis will focus on long running applications and their overall execution time.

Since our scheme employs built-in hardware for implementing security, and security-related
notifications piggyback the checkpointing messages, our security comes nearly free for systems that
already use checkpointing for fault tolerance. However, many legacy systems that do not use any
checkpointing will need to employ checkpointing before they can benefit from our scheme. In such
cases, cost of checkpointing is also included in the cost of employing our security scheme. To cover
all these possibilities, we consider the following three cases.

Case 1: This case includes all the mission critical legacy systems that do not employ checkpointing or
security.

Case 2: This case examines mission critical systems that employ checkpointing as a safety measure
in the absence of any failures or attacks. Note that this will be the worst case scenario for Case 1
systems that may adopt our scheme because there are practically no faults/attacks. Also, our security
scheme is nearly free for Case 2 systems, if they choose to employ it.

175

5

Ruchika Mehresh et al.

Case 3: The systems considered under Case 3 employ checkpointing and our proposed security
scheme (hardware signature verification). This case considers the occurrence of failures and security-
related attacks.

These three cases allow us to study the cost of adopting our security scheme in all possible
scenarios.

Since the proposed system is composed of both hardware and software subsystems, we could not
use one standard simulation engine to simulate the entire application accurately and obtain data.
Therefore, we combined the results obtained from individually simulating the software and the
hardware components using our multi-step simulation approach (Mehresh et al. 2010).

5.1 Simplified system prototype development

Figure 2 shows the modular design of the simplified system for mission critical applications with n
replicas. The coordinator is the core of this centralized replicated system. It is responsible for voting
operations on intermediate results, integrity signatures and checkpoints obtained from the replicas.
The heartbeat manager broadcasts periodic ping messages to determine if the nodes are alive. The
replicas are identical copies of the workload executing in parallel in lockstep.

Figure 2: Overall system design

5.2 Multi-step simulation approach

We use a multi-step simulation approach to evaluate the system performance for the three cases.
This new approach is required because there are currently no benchmarks for evaluating such
systems. A combination of pilot system implementation and simulation is used to obtain more realistic
and statistically accurate results.

Different components of this evaluation include a JAVA implementation based on Chameleon
ARMORs (Kalbarczyk et al. 1999), ARENA simulation (http://www.arenasimulation.com/) and
CADENCE simulation (http://www.cadence.com). ARENA simulation is discrete event and it simulates
the given system at a high level of abstraction. The lower levels of abstraction that become too
complex to model are parameterized using the data obtained from conducting experiments with the
JAVA system prototype. Another reason for using ARENA simulator is the analysis of long running
mission critical applications. Such an analysis with real-time experiments is not efficient and extremely
time consuming. The Java prototype consists of socket programming across a network of 100 Mbps
bandwidth. The experiments for measuring performance were conducted on Windows platform with
an Intel Core Duo 2 GHz processor and 2 GB RAM. CADENCE simulation is primarily used for the
feasibility study of the proposed hardware scheme. To verify the precision of our simulators, test
cases were developed and deployed for the known cases of operation.

This system accepts workloads from the user and executes them in a fault tolerant environment. We
used the Java SciMark 2.0 workloads as user inputs in this system prototype. The four workloads that
we used are: Fast Fourier Transform (FFT), Jacobi Successive Over-relaxation (SOR), Sparse Matrix

176

6

Ruchika Mehresh et al.

multiplication (Sparse) and Dense LU matrix Factorization (LU). The standard large data sets
(http://math.nist.gov/scimark2) were used.

Data-sets from short running replicated experiments were collected and fitted probability distributions
were obtained using ARENA input data analyzer. These distributions defined the stochastic
parameters for ARENA simulation model.

We examine the feasibility of the hardware component of this architecture (as described under
assumptions) as follows. The integrity signature of a replica is stored in the flip flops of the boundary
scan chain around a processor. This part of our simulation is centered on a boundary scan inserted
DLX processor (Patterson and Hennessy 1994). Verilog code for the boundary scan inserted DLX
processor is elaborated in cadence RTL compiler. To load the signature into these scan cells
a multiplexer is inserted before each cell, which has one of the inputs as test data input (TDI) and the
other from the 32 bit signature vector. Depending on the select line either the test data or the
signature is latched into the flip flops of the scan cells. To read the signature out the bits are serially
shifted from the flip flops onto the output bus.

5.3 Results

We analyze the prototype system for the three cases described earlier. Since we want to evaluate the
performance of this system in the worst case scenario where the checkpointing overhead is
maximum, we choose sequential checkpointing (Elnozahy et al. 2002). For the following analysis
(unless mentioned), checkpoint interval is assumed to be 1 hour. Table 1 presents the execution
times for the four Scimark workloads. The values from Table 1 are plotted in Figure 3 on a logarithmic
scale. We can see that the execution time overhead increases a little when the system shifts from
Case 1 to Case 2 (i.e., employing our scheme as a preventive measure). However, the execution time
overhead increases rapidly when the system moves from Case 2 and Case 3. The execution
overhead will only increase substantially if there are too many faults present, in which case it would be
worth the fault tolerance and security that comes along. As we can see from the values of Table 1, an
application that runs for 13.6562 hours will incur an execution time overhead of only 13.49 minutes in
moving from Case 1 to Case 2.

Figure 3: Execution times for Scimark workloads across three cases, on a logarithmic scale

Figure 4 shows the percentage increase in execution times of various workloads when the system
upgrades from a lower case to a higher one. It is assumed that these workload executions do not
have any interactions (inputs/outputs) with the external environment. The percentage increase in
execution times of all the workloads when the system upgrades from Case 1 to Case 2 is only around
1.6%. An upgrade from Case 1 to Case 3 (with mean time to fault, M =10) is around 9%. These
percentages indicate acceptable overheads.

177

7

Ruchika Mehresh et al.

Table 1: Execution times (in hours) for the Scimark workloads across three cases

FFT LU SOR Sparse

Case 1
3421.09 222.69 13.6562 23.9479

Case 2
3477.46 226.36 13.8811 24.3426

Case 3 (M=10)
3824.63 249.08 15.2026 26.7313

Case 3 (M=25)
3593.39 233.83 13.8811 24.3426

Figure 4: Percentage execution time overheads incurred by the Scimark workloads while shifting
between cases

As Table 1 shows, for a checkpoint interval of 1 hour and M =10, the workload LU executes for
approximately 10 days. Figure 5 shows the effect of increasing checkpoint interval for workload LU for
different values of M ranging from 5 to 25. The optimal checkpoint interval values (and the
corresponding execution times) for the graph plots in Figure 5 are provided in Table 2.

Figure 5: Effect of checkpoint interval on workload execution times at different values of M

Note that we used the multi-step approach for this simulation and the parameters for the simulation
model were derived from experimentation. Therefore, these results do not just represent the data
trends but are also close to the statistically expected real-world values.

178

8

Ruchika Mehresh et al.

Table 2: Approximate optimal checkpoint interval values and their corresponding workload execution
times for LU (Case 3) at different values of M

 M=5 M=10 M=15 M=25

Optimal Checkpoint Interval (hours)
0.3 0.5 0.65 0.95

Execution Times(hours)
248.97 241.57 238.16 235.06

6. Conclusion

This paper proposes a hardware based proactive solution to secure the recovery phase of mission
critical applications. A detailed threat model is developed to analyze the security provided by our
scheme. The biggest strengths of this research is its ability to deal with smart adversaries, give priority
to mission assurance, and use redundant hardware for capturing integrity status of a replica outside
the user space. Since this scheme is simple and has no visible application specific dependencies, its
implementation has the potential to be application transparent. For performance evaluation, we
investigated a simplified mission critical application prototype using a multi-step simulation approach.
We plan to enhance the centralized architecture to a distributed system for our future research work.
We defined cases to investigate the cost involved in applying our security scheme to all kinds of
systems (including the legacy systems with no fault tolerance). The performance evaluation showed
promising results and the cost/performance overhead is only a small percentage of the original
execution times when faults are absent. As the rate of fault occurrence increases, the overhead
increases too, but this additional overhead comes with fault tolerance and security. Overall, we
believe that our solution provides strong security at low cost for mission critical applications.

Acknowledgments

This work was supported in part by ITT Grant No. 200821J. This paper has been approved for Public
Release; Distribution Unlimited: 88ABW-2010-6094 dated 16 Nov 2010.

References

Abramovici, M. and Stroud, C.E. (2001) "BIST-based test and diagnosis of FPGA logic blocks", IEEE
Transactions on VLSI Systems, volume 9, number 1, pages 159-172, February.

Banatre, M., Pataricza, A., Moorsel, A., Palanque, P. and Strigini, L. (2007) From resilience-building to resilience-
scaling technologies: Directions – ReSIST, NoE Deliverable D13. DI/FCUL TR 07–28, Dep. Of
Informatics, Univ. of Lisbon, November.

Bessani, A., Reiser, H.P., Sousa, P., Gashi, I., Stankovic, V., Distler, T., Kapitza, R., Daidone, A. and Obelheiro,
R. (2008) “FOREVER: Fault/intrusiOn REmoVal through Evolution & Recovery”, Proceedings of the ACM
Middleware'08 companion, December.

Del Carlo, C. (2003) Intrusion detection evasion, SANS Institute InfoSec Reading Room, May.
Elnozahy, E.N., Alvisi, L., Wang, Y. and Johnson, D.B. (2002) "A survey of rollback-recovery protocols in

message-passing systems", ACM Computing Surveys (CSUR), volume 34 number 3, pages 375-408,
September.

Haeberlen, A., Kouznetsov, P. and Druschel, P. (2006) “The case for Byzantine fault detection”, Proceedings of
the 2nd conference on Hot Topics in System Dependability, volume 2, November.

Hrivnak, A. (2002) Host Based Intrusion Detection: An Overview of Tripwire and Intruder Alert, SANS Institute
InfoSec Reading Room, January.

Kalbarczyk, Z., Iyer, R.K., Bagchi, S. and Whisnant, K. (1999) "Chameleon: a software infrastructure for adaptive
fault tolerance", IEEE Transactions on Parallel and Distributed Systems, volume 10, number 6, pages 560-
579, June.

Mehresh, R., Upadhyaya, S. and Kwiat, K. (2010) “A Multi-Step Simulation Approach Toward Fault Tolerant
system Evaluation”, Third International Workshop on Dependable Network Computing and Mobile Systems,
October.

Patterson, D. and Hennessy, J. (1994) Computer Organization and Design: The Hardware/Software
Interface, Morgan Kaufmann.

Sousa, P., Bessani, A., Correia,M., Neves, N.F. and Verissimo, P. (2007) “Resilient intrusion tolerance through
proactive and reactive recovery”, Proceedings of the 13th IEEE Pacific Rim Int. Symp. on Dependable
Computing, pages 373–380, December.

Todd, A.D., Raines, R.A., Baldwin, R.O., Mullins, B.E. and Rogers, S.K. (2007) “Alert Verification Evasion
Through Server Response Forging”, Proceedings of the 10th International Symposium, RAID, pages 256-
275, September.

Wagner, D. and Soto, P. (2002) “Mimicry attacks on host-based intrusion detection systems”, Proceedings of the
9th ACM conference on Computer and communications security, November.

179

9

